Containerless Processing Technology

Dr. Jan Rogers

MSFC ESL Facility Scientist

TEMPUS Project Scientist for MSL-1 and MSL-1R

MSFC ESL and TEMPUS MSL Teams

- MSFC ESL Science Team:
 - Trudy Allen, ICRC
 - Glenn Fountain, Morgan Research
 - Ken Haynes, CSC
 - Tom Rathz, UAH
 - Dr. Chandra Ray, UMR
 - Dr. Mike Robinson, SD46
 - Dr. Jan Rogers, SD46
 - Kevin Vellacott-Ford, SD22
- MSFC ESL Programmatic Team:
 - Pat Doty, SD44
 - Dave Schultz, Sverdrup

TEMPUS MSL Team:

- Dr. Robert Bayuzick, Vanderbilt University
- John Brunson, MSFC
- Wolfgang Dreier, DLR
- Angleika Diefenbach, MUSC
- Dr. Ivan Egry, DLR
- Dr. Hans Fecht, TU Berlin
- Dr. Merton Flemings, MIT
- Dr. Martin Frohberg, TU Berlin
- Dr. Dieter Herlach, DLR
- Dr. William Johnson, Caltech
- Dr. Jorge Piller, Dornier
- Dr. Jan Rogers, MSFC
- Dr. Konrad Samwer, University of Augsberg
- Drs. Julian Szekely/Gerardo Trapaga, MIT

Containerless Processing

- Levitation
- Force positions and manipulates sample
 - No contact with container during processing

Current Status

- Ground based systems for several methods including:
 - Electrostatic
 - Electromagnetic
 - Acoustic
 - Aerodynamic
 - Other

Reduced Gravity

- Benefits: greatly reduced positioning forces, larger masses, spherical specimens and reduced phase separation due to buoyancy
- Shuttle examples:
 - Electromagnetic (DARA TEMPUS)
 - Acoustic (NASA DPM)
- Future possibilities include:
 - ISS Electromagnetic (ESA MSL-EML)
 - ISS Electrostatic (NASDA ELF)
 - Free Space processing

Reduced Gravity Technology Considerations

- Environment may require new designs and procedures
- Full implications of reduced gravity operations may not be intuitive
 - Containment of process materials and waste require special consideration
 - Testing of equipment and procedures in appropriate environment is important
- Process models may need to include "2nd order effects" often masked in 1-g
 - Code U program has developed a significant body of literature on these effects for material processing
 - Bibliography in OBPR Research Task Books (http://research.hq.nasa.gov/taskbook.cfm)
- Acceleration environment should be understood

Acceleration Environment

- Spacecraft environment is not zero-g
- Complex acceleration environment (course on ISS offered by PIMS Group at GRC)
- Sources include:
 - Atmospheric drag
 - Displacement from spacecraft center of mass
 - Spacecraft maneuvers
 - Equipment
 - Activities

TEMPUS Flight History

- IML-2
 - Sample stability issue
- MSL-1
 - Shortened mission
 - Reflectors perturbed magnetic field
- MSL-1R
 - Reflight, reflectors removed
 - Highly successful

Sample Processed During "Quiet" Spacelab

- 8 mm diameter sample
- Processed when other
 Spacelab equipment was turned off
- Sample motion still visible
- Ran a series of tests
- Able to demonstrate effects of reflectors on magnetic field
- This sample cage did not have reflectors
- Reflectors removed for MSL-1R

Sample Processing during 1-10 Hz Disturbances

TEMPUS Containerless Processing Summary

- Developed robust equipment and procedures to provide excellent data to all 10 PI teams
- Developed strategy to avoid problems associated with acceleration environment
 - Scheduled operations to avoid processing during 1-10Hz disturbances
 - Monitored environment and worked with accelerometer groups to suspend operations during 1-10Hz disturbances
 - Informed of crew exercise plans
- Crewed flight was essential to success of TEMPUS. Crew members performed a critical In-Flight repair

Alloy Developed by Dr. Bill Johnson using Containerless Techniques

PHYSICS TOORY

Targeting molten metals

JULY 2003

Uniqueness of Low Gravity Processing Containerless Processing Technology

Low-g versus Earth-g: Some Surprises

- D. Gillies/MSFC
- J. Rogers/MSFC
- R. German/Penn State